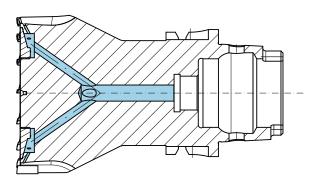
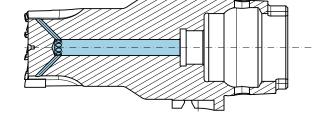


Lagerprogramm
Standard Portfolio

Mit dem monolithischen PKD-bestückten Hochleistungs-Planund Eckfräser (NAWA hpcCUT) lassen sich auf Grund der hohen Zähnezahl und der hohen Schnittgeschwindigkeiten enorme Vorschübe und damit auch Zeitspanvolumen realisieren. Der massive Stahlgrundkörper absorbiert entstehende Schwingungen und ermöglicht somit ausgezeichnete Oberflächengüten. Due to the high number of cutting edges, the monolithic PCD tipped high performance face and shoulder mill (NAWA hpcCUT) allows high feed rates and increased stock removal rates. The solid steel body absorbs vibrations which leads to excellent surfaces finishes.

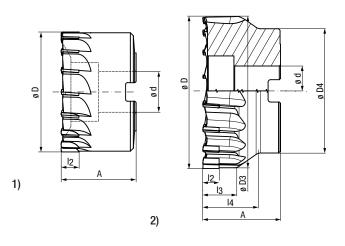

Werkzeugeigenschaften:


- Schnitttiefen bis 8 mm
- Hohe Schneidenanzahl
- Positiver Achswinkel
- Hohe Wuchtgüte
- Innere Kühlschmierstoffzufuhr
- Standardanschnitt mit Radius
- Sonderanschnitte für definierte Oberflächen auf Anfrage
- Nachschleifbar
- Lange Standzeiten

Tool characteristics:

- Up to 8 mm depth of cut
- High number of cutting edges for high feedrates
- Positive rake angle
- High balancing quality
- Internal coolant supply
- Standard radius lead
- Special lead geometries for defined surface finish available upon request
- Re-sharpening possible
- Long tool life

Optimale Kühlschmierstoffzufuhr durch zwei Bauweisen Optimised Coolant Supply thanks to two Geometries


Bauweise 1: Außendurchmesser ≥ 63 mm – der Kühlschmierstoff wird über einen Ring und dann weiter über einzelne Kanäle zu den Schneiden gebracht.

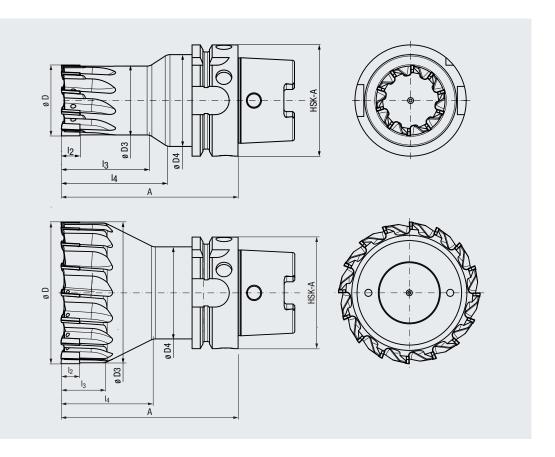
Design 1: Outer diameter ≥ 63 mm – the lubricant is supplied to the cutting edges via a ring and then via individual channels.

Bauweise 2: Außendurchmesser < 63 mm – der Kühlschmierstoff wird über einzelne Kanäle zu den Schneiden gebracht.

Design 2: Outer diameter < 63 mm - the lubricant is supplied to the cutting edges via individual channels.

Programm Aufsteckfräser Items Shell Type Mill

	SK 026 767								
ø D mm	Z (Flutes)	A mm	l ₂ mm	D ₃ mm	I ₃ mm	D ₄ mm	l ₄ mm	ER mm	
32	8	40	10			31		0,2	O ₁)
40	10	40	10			39		0,2	O ₁)
50	12	40	10			49		0,2	O ₁)
63	14	40	10			62		0,2	O ₁)
80	16	50	10	79	25	52	49	0,2	○ 2)
100	18	50	10	99	22	52	40	0,2	O ²)
125	22	63	10	124	22	52	41	0,2	○ 2)
160	28	63	10	159	22	52	41	0,2	O ²⁾


¹⁾ Befestigung mit Zylinderschraube mit Innensechskant · Clamping with a hexagon socket head cap screw

²⁾ Befestigung mit Fräseranzugsschraube nach DIN 6367 · Clamping with a cross retaining screw DIN 6367

Beispiel Ausführung < 63 mm Example type < 63 mm

Beispiel Ausführung ≥ 63 mm Example type ≥ 63 mm

Artikel Nr Item No.										
ø D mm	Z (Flutes)	A mm	l ₂ mm	D ₃ mm	l ₃ mm	D ₄ mm	l ₄ mm	ER mm	HSK-A63	
25	6	100	10	24	50	52	60	0,2	•	
32	8	100	10	31	50	52	60	0,2	•	
40	10	100	10	39	50	52	60	0,2	•	
50	12	100	10	49	50	52	60	0,2	•	
63	14	100	10	62	25	52	51	0,2	•	
80	16	100	10	79	25	52	49	0,2	•	
100	18	100	10	99	22	52	40	0,2	•	
125	22	100	10	124	22	52	41	0,2	•	
160	28	100	10	159	22	52	41	0,2	•	

	Weitere Ausführungen mit Artikel Nr. · Other versions with Item No.												
	HSK-A40	HSK-A50	HSK-A80	HSK-A100	SK40-AD	SK50-AD	BT30-AD	BT40-AD	BT50-AD	CAT40	CAT50		
ø D mm	SK 026 866	SK 026 867	SK 028 578	SK 026 766	SK 024 915	SK 026 765	SK 027 930	SK 025 032	SK 027 608	SK 027 640	SK 027 981		
25	0	0	0	0	0	0	0	0	0	0	0		
32	0	0	0	0	0	0	0	0	0	0	0		
40	0	0	0	0	0	0	0	0	0	0	0		
50		0	0	0	0	0		0	0	0	0		
63		0	0	0	0	0		0	0	0	0		
80			0	0	0	0		0	0	0	0		
100			0	0		0			0		0		
125			0	0		0			0		0		
160			0	0		0			0		0		

ullet = Lagerhaltig \cdot Stock item \circ = Als Standard verfügbar – Lieferzeit auf Anfrage \cdot Standard tool – delivery time upon request

Abhängig von der Auslegung des Anschnittes können unterschiedliche Oberflächen erzeugt werden.

Standardmäßig unterscheiden wir:

Oberflächenanforderung Surface requirement
$\begin{array}{l} R_a < 1.0 \\ R_z = 3.1 \end{array}$
$R_a < 1.0 - 2.0$ $R_z = 5.1$
$R_a < 2.0 - 4.0$ $R_z = 16$

By selecting the right lead geometry, we can influence the surface quality.

Our standard lead geometries are:

Anschnittgeometrie Lead geometry
Glänzend Glossy
Standard Standard
Definiert Defined

Verschiedene Anschnitte für unterschiedliche Oberflächengüten:

Different leads for defined surface finishes:

Standard Standard	Glänzend <i>Glossy</i>	Definiert <i>Defined</i>
$R_a = 1.0$ $R_z = 5.1$	$\begin{array}{l} R_a = 0.6 \\ R_z = 3.1 \end{array}$	$R_a = 3.5$ $R_z = 16$
		Control of the Contro
		And the second s

Sehen Sie sich den NAWA hpcCUT-Film auf YouTube oder der NAWA-Website an.

Watch the NAWA hpcCUT movie on YouTube or on the NAWA website.

Monolithische Werkzeuge überzeugen mit einigen herausragenden Eigenschaften:

Monolithic tools impress with some outstanding features:

Merkmale Features			nktion unction			Kundennutzen Benefits
		■ Kein Einstellen notwendig		 Geringe Werkzeugkomplexität und damit einfache Handhabung 		 Hohe Rundlaufgenauigkeit Geringe Kosten für Werkzeugvoreinstellung Hohe Prozesssicherheit
		■ No tool preadjustment necessary		■ Simple tool design and easy handling		 Precise run-out Low cost for tool preadjustment Reliable process conditions
■ Gelötete Schneiden und einteilige Ausführung	→	■ Hohe Zähnezahl		■ Hohes Zeitspanvolumen		■ Kurze Bearbeitungszeiten
■ Brazed cutting edges and monolithic design		■ High number of teeth		■ High material removal rates	→	■ Short processing times
		■ Hohe Wuchtgüte		■ Ruhiger Lauf, vor allem bei hohen Drehzahlen		 Gute Oberflächengüte Besseres Zeitspanvolumen durch höhere Drehzahlen
		■ High balancing quality	-	■ Smooth running even at elevated speeds	•	 Excellent surface finish Improved removal rates through elevated speeds

		Einsatzgebi Applicatior	Material-Beispiele Material examples	Material-Nummern Material numbers	ν _c [m/min]	f _Z [mm]		
		Nichteisenwerkstoffe	Non-ferrous materials					
		Aluminium-Legierungen	Aluminium alloys					
	1.1			≤ 200 N/mm ²	EN AW-AIMn1	EN AW-3103	2500 - 5000	0,08 - 0,12
	1.2	Aluminium-Knetlegierungen	Wrought aluminium alloys	≤ 350 N/mm ²	EN AW-AIMgSi	EN AW-6060	2500 - 5000	0,08 - 0,12
	1.3			≤ 550 N/mm ²	EN AW-AIZn5Mg3Cu	EN AW-7022	2500 - 5000	0,08 - 0,12
	1.4			Si ≤ 7%	EN AC-AIMg5	EN AC-51300	2500 - 5000	0,08 - 0,12
	1 .5	Aluminium-Gusslegierungen	Aluminium cast alloys	7% < Si ≤ 12%	EN AC-AlSi9Cu3	EN AC-46500	2500 - 5000	0,08 - 0,12
	1 .6			12% < Si ≤ 17%	GD-AlSi17Cu4FeMg		1000 - 2000	0,08 - 0,12
		Kupfer-Legierungen	Copper alloys					
		Reinkupfer, niedriglegiertes Kupfer	Pure copper, low-alloyed copper	≤ 400 N/mm ²	E-Cu 57	EN CW 004 A	1000 - 2000	0,08 - 0,12
		Kupfer-Zink-Legierungen (Messing, langspanend)	Copper-zinc alloys (brass, long-chipping)	≤ 550 N/mm ²	CuZn37 (Ms63)	EN CW 508 L	1000 - 2000	0,08 - 0,12
		Kupfer-Zink-Legierungen (Messing, kurzspanend)	Copper-zinc alloys (brass, short-chipping)	≤ 550 N/mm ²	CuZn36Pb3 (Ms58)	EN CW 603 N	1000 - 2000	0,08 - 0,12
			Copper-aluminium alloys (alu bronze, long-chipping)	≤ 800 N/mm ²	CuAl10Ni5Fe4	EN CW 307 G	1000 - 2000	0,08 - 0,12
		Kupfer-Zinn-Legierungen (Zinnbronze, langspanend)	Copper-tin alloys (tin bronze, long-chipping)	≤ 700 N/mm ²	CuSn8P	EN CW 459 K	1000 - 2000	0,08 - 0,12
_		Kupfer-Zinn-Legierungen (Zinnbronze, kurzspanend)	Copper-tin alloys (tin bronze, short-chipping)	≤ 400 N/mm ²	CuSn7 ZnPb (Rg7)	2.1090	1000 - 2000	0,08 - 0,12
	2 .7	Kupfer-Sonderlegierungen	Special copper alloys	≤ 600 N/mm ²	(Ampco 8)		1000 - 2000	0,08 - 0,12
	2 .8			≤ 1400 N/mm ²	(Ampco 45)		1000 - 2000	0,08 - 0,12
_		Magnesium-Legierungen	Magnesium alloys					
		Magnesium-Knetlegierungen	Magnesium wrought alloys	≤ 500 N/mm ²	MgAl6Zn	3.5612	2500 - 5000	0,08 - 0,12
	3 .2	Magnesium-Gusslegierungen	Magnesium cast alloys	≤ 500 N/mm ²	EN-MCMgAl9Zn1	EN-MC21120	2500 - 5000	0,08 - 0,12
_		Kunststoffe	Synthetics					
		Duroplaste (kurzspanend)	Duroplastics (short-chipping)		Bakelit, Pertinax		1500 - 3000	0,08 - 0,12
		Thermoplaste (langspanend)	Thermoplastics (long-chipping)		PMMA, POM, PVC			
		Faserverstärkte Kunststoffe (Faseranteil ≤ 30%)	Fibre-reinforced synthetics (fibre content ≤ 30%)		GFK, CFK, AFK		1500 - 3000	0,08 - 0,12
		Faserverstärkte Kunststoffe (Faseranteil > 30%)	Fibre-reinforced synthetics (fibre content > 30%)		GFK, CFK, AFK		1500 - 3000	0,08 - 0,12
_		Besondere Werkstoffe	Special materials					
		Grafit	Graphite		C 8000		1000 - 2000	0,08 - 0,12
		Wolfram-Kupfer-Legierungen	Tungsten-copper alloys		W-Cu 80/20		1000 - 2000	0,08 - 0,12
	5 .3	Verbundwerkstoffe	Composite materials		Hylite, Alucobond		1000 - 2000	0,08 - 0,12

Bei den Schnittwerten handelt es sich um grobe Richtwerte. The cutting data are just guiding values.

Die Wirtschaftlichkeit von PKD-Werkzeugen erhöht sich durch die fachgerechte Instandsetzung. Damit verlängert sich der Gesamtlebenszyklus der Werkzeuge und die Werkzeugkosten werden reduziert.

Die Werkzeuge durchlaufen eine Eingangskontrolle. Stellen wir erhöhten Verschleiß fest oder die Beschädigung von Schneiden, informieren wir Sie über die Wirtschaftlichkeit der Instandsetzung und stimmen die weitere Vorgehensweise mit Ihnen ab.

Selbstverständlich ersetzen wir, wenn notwendig, Schneiden mit der gleichen PKD-Sorte, damit die Leistungsfähigkeit des Werkzeugs im vollen Umfang erhalten bleibt.

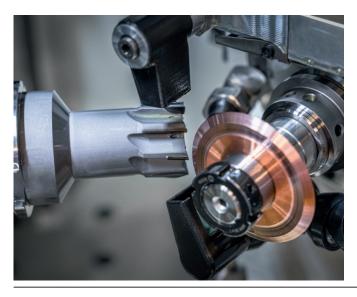
Das fachgerechte Nachschärfen übernehmen unsere Nachschärfmaschinen, die baugleich mit den Produktionsmaschinen sind. Damit bleiben Präzision und Schneidkantenstabilität in vollem Umfang erhalten.

Auf Wunsch versehen wir die Werkzeuge mit einem Messprotokoll.

The economical use of PCD tools is enhanced by professional reconditioning. The overall tool life will be increased, which leads to a decrease in tool cost.

Naturally the tools will be inspected when they arrive at our facility. In case we notice increased wear or damaged cutting edges, we will inform you about the most economical reconditioning method and will conclude together with you the next steps.

It is self-evident, that we replace cutting edges when needed with the same PCD grade to maintain the full performance capability of the tool.


The professional resharpening is executed on our resharpening machines, which are identical with our production machines.

This way the tools will fully maintain their precision and cutting edge stability.

On request we return the tool with a measuring protocol.

NAWA Präzisionstechnik GmbH

Kachelstein 10 D-72519 Veringendorf

Telefon: +49 7577 9331 - 0

E-Mail: info@nawa-gmbh.de Internet: www.nawa-gmbh.de

